Hydrodynamic stability without eigenvalues.

نویسندگان

  • L N Trefethen
  • A E Trefethen
  • S C Reddy
  • T A Driscoll
چکیده

Fluid flows that are smooth at low speeds become unstable and then turbulent at higher speeds. This phenomenon has traditionally been investigated by linearizing the equations of flow and testing for unstable eigenvalues of the linearized problem, but the results of such investigations agree poorly in many cases with experiments. Nevertheless, linear effects play a central role in hydrodynamic instability. A reconciliation of these findings with the traditional analysis is presented based on the "pseudospectra" of the linearized problem, which imply that small perturbations to the smooth flow may be amplified by factors on the order of 10(5) by a linear mechanism even though all the eigenmodes decay monotonically. The methods suggested here apply also to other problems in the mathematical sciences that involve nonorthogonal eigenfunctions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descriptor Approach for Eliminating Spurious Eigenvalues in Hydrodynamic Equations

We describe a general framework for avoiding spurious eigenvalues — unphysical unstable eigenvalues that often occur in hydrodynamic stability problems. In two example problems, we show that when system stability is analyzed numerically using descriptor notation, spurious eigenvalues are eliminated. Descriptor notation is a generalized eigenvalue formulation for differential-algebraic equations...

متن کامل

Shape optimization towards stability in constrained hydrodynamic systems

Hydrodynamic stability plays a crucial role for many applications. Existing approaches focus on the dependence of the stability properties on control parameters such as the Reynolds or the Rayleigh number. In this paper we propose a numerical method which aims at solving shape optimization problems in the context of hydrodynamic stability. The considered approach allows to guarantee hydrodynami...

متن کامل

Eliminating spurious eigenvalues in the analysis of incompressible fluids and other systems of differential-algebraic equations

We describe a general framework for avoiding spurious eigenvalues — unphysical unstable eigenvalues that often occur in hydrodynamic stability problems. In two example problems, we show that when system stability is analyzed numerically using descriptor notation, spurious eigenvalues are eliminated. Descriptor notation is a generalized eigenvalue formulation for differntial-algebraic equations ...

متن کامل

Eigenvalue calculator for Islanded Inverter-Based Microgrids

The stability analysis of islanded inverter-based microgrids (IBMGs) is increasingly an important and challenging topic due to the nonlinearity of IBMGs. In this paper, a new linear model for such microgrids as well as an iterative method to correct the linear model is proposed. Using the linear model makes it easy to analyze the eigenvalues and stability of IBMGs due to the fact that it derive...

متن کامل

Gegenbauer Tau Methods With and Without Spurious Eigenvalues

Abstract. It is proven that a class of Gegenbauer tau approximations to a 4th order differential eigenvalue problem of hydrodynamic type provide real, negative, and distinct eigenvalues as for the exact solutions. This class of Gegenbauer tau methods includes Chebyshev and Legendre Galerkin and ‘inviscid’ Galerkin but does not include Chebyshev and Legendre tau. Rigorous and numerical results s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 261 5121  شماره 

صفحات  -

تاریخ انتشار 1993